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Transonic shear flow in a three-dimensional channel 

By T. C. ADAMSON AND M. SICHEL 
The University of Michigan, Ann Arbor, Michigan 48109 

(Received 12 March 1981 and in revised form 9 April 1982) 

Inviscid transonic shear flow in a rectangular channel is considered ; opposite walls 
are parallel except in the region of interest, where one pair of opposing walls form 
a nozzle-like constriction. The flow exhibits the essential features found in an axial-flow 
rotor of zero stagger angle, where the relative velocity is transonic, the constricted 
passage being similar to the channel formed between two adjacent blades. Analytical 
solutions, valid to second order, are presented for the case where the ratio of the order 
of the change in velocity caused by the variation in flow area to the order of the change 
in velocity across the channel due to the shear is unity. The case where this ratio is 
small compared with one is discussed, as is the problem formulation for a flow with 
a shock wave in the passage 

1. Introduction 
The problem considered is that of  a three-dimensional channel, rectangular in 

cross-section and with a nozzle-like constriction formed by two walls, through which 
passes a transonic shear flow. The flow field exhibits the essential features found in 
an axial-flow rotor when the velocity relative to the blades is transonic, although other 
applications may exist. Thus the flow through the constriction is associated with that 
between the blades of a rotor, and the plane walls upstream and downstream of the 
constriction approximate the symmetry boundaries in the flow entering and leaving 
the rotor when the stagger angle is zero. The remaining two walls, parallel to each 
other, are associated with the hub and tip of the rotor. The linear gradient in the 
incoming flow models the gradient that  occurs in the flow relative to the blades in 
a rotor as a result of the radial variation of the tangential velocity component. This 
is, then, an extension to three dimensions of the problem considered by Ackeret 85 
Rott (1949). Numerical results for a given set of conditions have been given by Oliver 
& Sparis (1971). 

In  the present work asymptotic methods of solution are employed. Such methods 
have proved successful in dealing with transonic channel flows that are two- 
dimensional and unsteady (e.g. Adamson, Messiter & Liou 1978), and, as will be seen, 
provide essential simplifications in this problem, allowing analytical solutions to be 
obtained for two cases. The most striking feature of these solutions is the fact that 
even though the incoming flow has a spanwise gradient in the velocity, the first 
perturbation depends only on the co-ordinate in the flow direction; i.e. the problem 
reduces to that for a simple one-dimensional channel flow, to first order. Higher-order 
solutions then contain three-dimensional effects. These results depend on the fact that 
the incoming flow remains a uniform shear flow no matter what conditions may be 
imposed downstream of the flow constriction. Hence they are not valid for, say, a 
shear flow entering a stationary channel in the case where signals could propagate 
upstream and change the form of the profile of the incoming stream. However, they 
are applicable to the flow relative to a rotor, in which case the velocity vector is 
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composed of the uniform flow component in the axial direction, the magnitude of 
which may be changed by signals propagating upstream, and a tangential component 
imposed upon the flow by the rotation of the rotor, which depends only upon the 
product of the radius and the rotational velocity. Thus a gradient, approximated here 
by a linear gradient, always exists in the incoming flow. 

I n  the following, the flow is assumed to  be inviscid, compressible, and transonic, 
and the gas is assumed to follow the perfect-gas law and to have constant specific 
heats. The incoming flow is taken to  be uniform, with the exception that it has a 
velocity gradient in one direction and thus is rotational; this is different from the 
actual rotor problem, where the relative entering flow is irrotational. The analysis 
is only slightly complicated by this difference. 

2. Formulation of the problem 
The three-dimensional channel considered, the incoming shear flow, and the 

notation used are shown in figure 1 .  In  the top view are shown the flow constriction, 
corresponding to the channel formed between two blades, and the parallel walls, 
corresponding to symmetry boundaries in the actual rotor problem. The case 
illustrated is that  for which the channel is symmetrical, corresponding to a cascade 
with no stagger and with the blades aligned parallel to  the incoming flow. The 
extension to the case where one nozzle wall (half-blade) is moved downstream relative 
to the other, to simulate stagger, is not difficult, but' is more complex algebraically 
and will not be shown here. I n  the side view are shown the parallel walls corresponding 
to the hub ( z  = 0) and tip shroud ( z  = b ) ,  the incoming shear flow, and the leading 
and trailing edges of the flow constriction (blades). All lengths are made dimensionless 
with respect to the half-chord +c of the blades, and velocities with respect to the speed 
of sound a,, in the incoming flow; overbars indicate dimensional quantities. The 
pressure P and temperature T are dimensionless with respect to their values in the 
incoming flow, which is referred to by the subscript 0. The blade spacing and span 
are 2s and b respectively. The position of the sonic surface in the incoming flow is 
zso, and the values of the velocity components, temperature and pressure there are 

U ,  = 1+6(z-zs,), , v,, = Jq] = 0, 

To = Po = 1,  

where, for transonic flow, 6 4 1 .  I n  the top view, the wall shape is given by 

y w  = k(s--82f(x)) (14 ,< I ) ,  P a )  

yw = f s  (1x1 ' 11, ( 2 b )  

where the thickness of the constriction (blade) is of order e2 + 1. The blade shape 
is assumed to remain unchanged across its span. 

It has been shown (e.g. Adamson, Messiter & Richey 1974; Messiter & Adamson 
1975) that  in a two-dimensional channel flow, variations in wall shape of O ( 2 )  cause 
variations in U that  are O(s)  ; thus a typical expansion is U = 1 + t'ul + . . . . Here, then, 
problems that may be considered arc characterized by the order of S / E ,  where 6 orders 
AU,,, the AU that occurs across the channel in the incoming flow (as in ( la)) ,  and 
E orders All,, say, the AUthat occurs in the flow direction as a result of the nozzle-like 
constriction. For S / E  4 1 ,  then, AU,, 4 AUc, and the flow field is described in terms 
of small perturbations from a two-dimensional channel flow. For S / E  % 1 ,  on the other 
hand, AU, 4 All,,;  the constriction is expected to add small changes to the incoming 
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FIGURE 1. Top and side views of the rectangular channel, showing U,,(z)  and the position zso of 
the sonic surface in the incoming flow. 
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shear flow. Finally, for 6 = O(e) ,  the largest deviations from either two-dimensional 
or pure shear flow are to be expected. 

The case 6 = O(e)  is considered here first, in detail, for conditions under which no 
shock waves occur in the channel. Then the problem formulation when a shock wave 
occurs in the supersonic part of the flow, still for 6 = O(e) ,  is presented; in this analysis 
it is found necessary to consider a thin inner region in which the solutions satisfy jump 
conditions where there is a shock wave and match with the outer channel-flow 
solutions upstream and downstream of the shock wave, in the appropriate limits. 
Finally, the case S / E  @ 1 is discussed briefly. When 8 / e  4 1, solutions show relatively 
trivial differences from those for two-dimensional flow and so are not presented here. 
A very brief report of the initial phases of this work (Adamson 1977) shows only the 
first-order solutions for one velocity component, for S = O(e) .  

3. Solutions for 6 = O(e)  
For convenience, S and e are related as follows, where m is an arbitrary constant 

(3) 
of order unity: 6 = me. 

Solutions for the velocity components are written in terms of perturbations from their 
values in the incoming flow ; because the flow has small rotation they are written in 
terms of a perturbation potential $ and an additional function qA as follows: 

q = iU, + vq5 + q A .  (4) 

Just  as in problems in two-dimensional channel flow, the velocity components, and 
therefore $, are written in terms of asymptotic expansions in powers of e. Thus 
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with similar expansions for V, and W,. The location of the sonic surface in the 
incoming flow may be set to various orders of approximation also, and so is expanded 
as 

(6) 

( 7 )  
and becomes ht, = i / ( y -  1)++U: = h,, (2) in the incoming flow, where y is the ratio 
of specific heats. The expansion for h, is then 

(8) 
where aifl(e) 4 a i ( e )  4 1 .  Since a2 = T ,  where a is the dimensionless (with a,) speed 
of sound, expansions for a or T may be found in terms of those already introduced 
by substituting the expansions for the velocity components, z,, and h, into (7) .  It may 
be noted that corresponding expressions for pressure and density can be derived, using 
the equations of state and the equation of motion in the flow direction. 

z,o = zoo + ez,, + 2 z 2 ,  + . . . . 

h, = T / ( y - l ) + $ ( U Z +  V2+ W z )  

The stagnation enthalpy, made dimensionless with respect to a:, is 

h, = h,, + a, ht, + a2 h,, + . . . , 

The governing equations are, for steady inviscid flow, 

q . V(iq2) = a2V. q, 
T 

Y 
q X S 2  = Vh,--V$, 

1 

Y 
( q . V ) Q =  ( n . V ) q - n ( v . q ) + - V T x V S ,  

where R = V x q is the vorticity and S is the entropy made dimensionless with respect 
to the gas constant R.  The incoming flow has uniform entropy and the flow is 
transonic, so that if shock waves occur, they are weak. In  addition, because of the 
small curvature in the boundaries, the curvature of the shock wave is small; hence 
a t  a shock wave Us, = Ug)(z )+ . . . , and S-So = E ~ $ , ( z ) +  . . .downstream of the 
shock wave. I n  general, (9c) is used to find qA, and Crocco’s equation (9b) gives 
equations for the three derivatives of htZ; Crocco’s equation is easier to use than the 
energy equation in this instance. Finally, the potential q5 is found from the 
gasdynamic equation (9a) .  

The boundary conditions at the walls z = 0 and z = b are simply 

W ( x ,  y, 0) = w x ,  y, b )  = 0, 
while on the remaining walls 

V(X,  fy,, z )  = f e y ’  (4 U(x ,  fy,, z )  (1x1 d I ) ,  (11a)  
= o  (1x1 ’ (1  1 b )  

wheref’(x) = d f / d x .  Finally, all perturbations die out as x + - 00,  and a t  each level 
of approximation we choose, arbitrarily, to  set the terms from Vq5 and qA equal to 
zero separately. 

If the expansions for the velocity components, (4) with ( l a ) ,  (3), ( 5 )  and (6), are 
substituted into ( S c ) ,  i t  is found that qA = O ( e 2 ) ;  the flow is irrotational to first order. 
Using the same expansions and (8) for h,, one finds from (9b) that a1 = O ( e 2 ) ;  here 
we let 

where the arbitrary constant has been set equal to unity for convenience. Finally, 
if ( 7 )  with T = a2 is substituted into ( 9 a ) ,  use of the above mentioned expansions for 

a, = €2, (12) 
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the velocity components allows derivation of the first-order equation for $; thus 

$ l , ? / + $ l Z Z  = 0, (13) 

where subscripts indicate partial differentiation. From (10) and (1  1 )  the corresponding 
boundary conditions are - 

$I,@, Y,  0) = $l&, y, b )  = 0. (14b) 

$1 = $ 1 ( 4 .  (15) 

Hence, from (13) and (14), i t  is seen that 

That is, the first order perturbation is one-dimensional. 

from the three components of (9c) are 
With (15) taken into account the equations for the second-order terms of qA found 

Likewise, one finds from (96) first that (htl)s = 0. Since all perturbations die out as 
x+- co 

htl = 0, (17) 

and so the remaining components of (9b)  give equations that are integrals of (16h, c). 
If (16a-c) are integrated, the functions of integration are either identically zero or 
may be absorbed in $25. Of the 'resulting partial differential equations only the 
particular solutions are required ; $2 contains the corresponding complementary 
solutions. The particular solutions that satisfy the condition as x -+ - 00 are 

ua2 = -mz$,,, va2 = 0,  wa2 = 0. (18c, b ,  c )  

If (17) and (18) and the expansions for the velocity components and a2 are employed 
in ( g a ) ,  (10) and ( l l ) ,  one finds the following governing equation and boundary 
conditions for $2:  

where = o  (1x1 ' 
uo = m(z-zoo) .  (20) 

The solution for $ z  is found by substituting $2 = A(x ,  y ) + B ( x ,  z )  into (19a) and 
letting A,, = ( y+  1 )  $lzz-go(x) and B,, = 2u0 $lss+go(x), where go@) is found 
through the application of the boundary conditions given in (19b) .  The result is 

(21) $2 = [(r+ 1 )  $1z+m(b-2~00)1W $1zz+m (&"W) $1ss+h(x), 

where h(x) is a function of integration. 



448 T .  C. Adamson and M .  Xichel 

If is calculated from ( 2 1 ) ,  and then used in (19 c ,  d )  in evaluating the boundary 
conditions, one obtains a governing equation for qjl(x) which is easily integrated. 
Thus, one obtains 

where the upper (minus) sign is used for x < x, and, when a shock wave occurs, for 
x > x,,,; the lower (positive) sign is used for x, c x < xSh. Here x, is the position 
of the minimum in the cross-sectional flow area and xSh refers to the position of a 
shock wave that might occur downstream of x,; the conditions for the occurrence 
of such a shock wave will be discussed later. The condition that qjlx --t 0 as x + - 00 

was used to set a constant in ( 2 2 ) .  With the use of ( 2 2 ) ,  (21 )  may be simplified to 

( 2 3 )  
qj2 = - - ~ ~ ~ + m ( ~ z ~ - $ ~ b ) q j , , , + h ( ~ ) .  f’ 

2s 

In ( 2 2 ) ,  the sign of qjlX depends upon the sign of fb-zoo;  i.e. for zoo >< @, qjlx >( 0, 
for x < 5,. Now, if zoo > b the flow entering the channel is completely subsonic (the 
position of the sonic surface, for the given velocity gradient, lies outside the channel) 
and so one expects the flow to accelerate, g51x > 0, as i t  moves through the part of 
the flow constriction where the cross-sectional area is decreasing. Similarly, one 
expects decelerated flow, qjlx < 0, for zoo < 0 where the entering flow is entirely 
supersonic. Here, however, the result is that if the flow is mixed, but subsonic on the 
average (zoo > i b )  or mixed and supersonic on the average (zoo c fb), one finds qjlx > 0 
or qjlx < 0 respectively. 

The equation for the sonic surface, z ,  = zo + €2, + . . . , is found by setting q = a and 
using equation (7) for a = fl. To lowest order, the result is 

where the sign conventions mentioned for (22 )  hold for (24 )  as well. 
In  both ( 2 2 )  and ( 2 4 )  it  is seen that if f(xm) = t is the point a t  which f(x) is a 

maximum so that  the cross-sectional area is a minimum, then for real values of qjlz 
and z,, the condition 

must be met. Thus there is a forbidden region for the sonic surface in the incoming 
flow. This region is illustrated by calculations shown in figure 2 ,  as are solutions for 
the sonic surface for various values of zoo, for a circular-arc airfoil. For zoo greater 
or less than the limits found from (25 )  using the equality (i.e. outside the forbidden 
region), only the upper sign in (24 )  may be used; for zoo equal to either limit, the upper 
sign is used for x < x, and either the upper or lower sign is used for x > x,. No shock 
waves are considered. It is seen that since the flow velocity consists of a linear gradient 
plus a perturbation that depends only upon x, to first order, the velocity retains the 
linear gradient throughout the channel; the average velocity a t  any x-position is its 
value at z = $b. Hence in figure 2 i t  is seen that the boundaries of the so-called 
forbidden region correspond to those average values of the incoming velocity 
(one subsonic and one supersonic) for which the average value of the velocity at the 
minimum area is sonic (the sonic surface passes through z = +b a t  x = x,). This is, 
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FIGURE 2. Sonic surface (first order) z,, versus z for various initial values, zso, from (2 ). Airfoil has 
circular-arcprofile,f(z) = t(l-(z-z,)2/(1~zm)2),withuppersignforz < z,; 6 = 4, t  = 2 , ~  = 0 1 ,  
s = 6, rn = 0625, z, = -5.  (Aspect ratio = 2 and airfoil thickness ratio = 2%.)  

then, on the average, precisely the same situation found in two-dimensional nozzle 
flows as a choking condition is approached with either subsonic or supersonic values 
for the velocity upstream of the throat of the nozzle. 

Again referring to figure 2, it is clear that for each zoo greater than the upper limit 
there is a corresponding pressure downstream of the constriction. As the pressure 
downstream decreases, signals can pass upstream and change the conditions in the 
incoming flow such that z,  = zoo+ . . . decreases, but the gradient remains. This 
corresponds, in a compressor flow, to signals moving upstream and increasing the 
value of the absolute axial flow with the tangential component of velocity (rw) 
remaining unchanged. This result holds until the upper limit predicted by (25)  is 
reached, a t  which time the average velocity at the minimum area is sonic. As shown 
on figure 2, there are also two downstream conditions for which this averaged 
velocity-choking condition holds. Evidently, for pressures between those associated 
with these two conditions, there is a shock wave in the channel, downstream of x,, 
which does not extend across the channel and which moves downstream as the 
pressure downstream of the constriction decreases. This explanation contains the 
implicit assumption that the flow a t  some point upstream of the shock wave is 
unchanged, even though conditions downstream of the shock wave are varied. It will 
be shown that one can in fact consider an  inner region about the shock wave, O ( d )  
in thickness, in which signals can pass upstream of the shock wave in the subsonic 
part of the flow and thus affect the supersonic flow upstream of the shock. However, 
this effec: is evidently a local one; the subsonic and supersonic parts of the flow 
accommodate to each other in a thin region, and one can continue to explain 
variations in the flow by applying simple one-dimensional flow concepts to  the 
average flow quantities. Evidently, this mixed channel flow can be choked. 

I n  order to  complete the solutions to second order, it is necessary to find h, in (23) ; 
as in the analysis for qbIz, this involves finding the third-order terms in the V and 
W velocity components and applying the boundary conditions. Following the same 
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sequence of steps used in obtaining the governing equations for $lx, one finds for h, 

h, = -Q ( 2 y  - 3 )  $:z + $ f " S  + &mb3 #1,,, 

+ [(r + 1 )  #lz + m(b - 2200)]-1 { mz,,f --Qrnbf"s 
s 

+i$yX [ - - ( b - 2 2 0 0 ) Q ( 5 y - 3 ) + m b ( y +  1) +2m2b4$1,,, 1 
where C, is a constant of integration. It is seen that when the flow is choked to first 
order and x + x,, then ( y  + 1 )  $lz + m ( b  - 22,,) -P 0, and h, may become singular. 
However, using ( 2 2 ) ,  one can show that if near x =. x,, f(x) has the typical form 
1 --f(x)/t = const (X-X,)~ + . . . , then $1,,, does not exhibit singular behaviour. 
Under these conditions, if h, is to remain finite, 

Moreover, for U = rJo as x + - CQ, then 

( Y + l ) C Z  
2m2 ( b  - 22,,) ' 

Zl0 = - 

and solutions for the velocity components, valid to O ( e 2 ) ,  have been obtained. The 
shape of the stream surfaces are easily derived from these solutions. 

4. Problem formulation when a shock wave occurs (6 = O ( e ) )  
The conditions under which a shock wave may be expected to occur are those for 

which the pressure immediately downstream of the flow constriction is between the 
values associated with the limiting position of the sonic surface. In  figure 2 ,  i t  is seen 
that since flow conditions are multi-valued only for x > x,, then x,, > x,, where, 
again, X,h refers to the position of the shock wave. Moreover, since the pressure 
downstream of the constriction must fall between the limiting values, and the 
pressure across a shock wave increases, the flow upstream and downstream of the 
shock wave must be, on the average, supersonic and subsonic respectively; in ( 2 2 )  
and ( 2 4 ) ,  then, the upper signs hold for x, < x < x,h and the lower for x > x,h. Now, 
i t  can be shown that the solutions for U do not satisfy the jump conditions across 
a shock wave even to O(e) ,  so that an inner region enclosing the shock wave must 
be considered, as in the case of a flow in a two-dimensional channel (Messiter & 
Adamson 1975). The solutions given so far may therefore be considered as outer 
solutions to which the solutions in this inner region must be matched; in addition, 
the jump conditions across the shock wave must be satisfied by the inner solutions. 

Although there are some similarities to the problem of a shock wave in the flow 
through a two-dimensional channel, there is a fundamental difference in that in the 
present case the shock wave need not extend across the channel. An idea of the 
flowfield that results in this case may be gained by noting that a t  the upper surface 
the shock wave must be normal to the wall, and that the sonic surface must join the 
curve given by (24)  as the outer region is approached. A sketch of the resulting 
configuration for accelerating flow is shown in figure 3, where the details of the 
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FIGURE 3. Sketch of flow field with a shock wave. Details of the region where the shock wave meets 
the sonic surface. omitted here, are shown in figure 4. Dashed lines show limiting sonic surfaces 
(for flows in which the average Mach numbers are unity at the location of minimum cross-sectional 
flow area). In the case shown, the sonic surface follows the limit shape for accelerating flow u p  to’ 
the shock wave. Downstream of the shock, it joins the limit shape for flow tha t  is subsonir (on the 
average) to  first order. 

formation of the shock wave near the sonic surface are not shown; evidently, this 
formation occurs as a result of the coalescence of weak compression waves emanating 
from the sonic surface. 

I n  the inner region there must be a rapid adjustment of the flow from upstream 
to downstream conditions. Therefore, it is to be expected that flow acceleration will 
be important to first order. Variations in U arc O ( s ) ,  and if in this inner region 
x-xx,h = O ( P ) ,  say, then a perturbation potential would be O ( E ~ + ~ ) ,  and y and z arc 
both O(1). From (9a ) ,  then, i t  is easily shown that a: = +. Hence, in the inner 
adjustment region, the velocity components are taken to be functions of x+, y and 
z ,  where x+ and the expansions for these components are as follows: 

x+ = (x-xx,h) (29a) 

u = 1+eu:+sbL;+. . . , 

w = €5w:+&2w;+ . . . , 

with an expansion for I.’ similar to that for W .  I n  (296) ,  u: = &++u&; i.e. the 
velocity is again a sum of a potential and additional function, with similar relations 
for the v t  and wt. 

The solutions to which those in the inner adjustment region must mat,ch as 
x+ -*+ 00 are found by expanding the outer solutions derived in 5 3 about 
x = x,h. To lowest order, they are 

(30 c )  
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where g,, represents the radicand in the radical in (24), evaluated a t  x = xSh, and 
where the upper and lower signs hold as x+ -+ - co and x+ -+ + 00 respectively. The 
boundary conditions are simply 

(31 a,) 

Using (9a-c) and the above expansions and matching and boundary conditions, 
it may be shown that v: = 0, u t  = ut (x+, z )  and w;' = w: (x+, z )  satisfy all conditions 
and equations, and that the governing equations for u: and w t  are 

V t ( X + ,  + s , z )  = 0, 
w:(x+,y,O) = wt(x+,y,b) = 0. (31b) 

[(7+l)u:-(y--l)mz] u;'z+-u& = 0, (32a) 

(u;' - mz), - WE,+ = 0. (32 b) 

Finally, from the equations for the shock polar and the shape of the shock wave 
(Messiter & Adamson 1975), i t  is found that a t  the shock, 

(33a) [i (7 + 1 (u:d + utu) - (7- 1 )  mz] (utd - u t ~ ) ~  = (wfd - wru)2, 

where subscripts u and d refer respectively to conditions immediately upstream and 
downstream of the shock wave. The problem, then, is the solution of (32a, b) ,  subject 
to the given boundary (31) and matching (30) conditions, with (33a, b) holding a t  
the shock wave in the interior of the region. At the upper wall, where the shock wave 
is normal, a jump in pressure occurs. As z decreases, the shock wave becomes weaker; 
thus the pressure jump across the shock becomes smaller with a larger change in 
pressure upstream of the wave due to  the many compression wavelets that  arise from 
the sonic surface and coalesce with the shock wave, making i t  stronger with 
increasing z .  Finally, the strength of the shock goes tJo zero as the sonic surface is 
approached. In  the subsonic region, the pressure gradient is supported by a relatively 
large curvature of the streamlines. A sketch of the flow problem to be solved, to the 
scale of the inner region, is shown in figure 4. 

It is clear that a numerical solution is called for in this inner adjustment region. 
Except for the boundary conditions along the upper wall, the problem is quite similar 
to that considered by Melnick & Grossman (1974) in their study of the interaction 
between a shock wave and a boundary layer. Because this is a model problem, i t  was 
not deemed worthwhile to expend the considerable effort necessary to perform 
numerical computations. However, a very simple three-strip method of integral- 
relations solution was used to  obtain some numerical results. Although the accuracy 
obtained was no+, sufficient to  warrant presentation, the general features described 
above and the similarities to  the work of Melnik & Grossman (1974) were confirmed. 

It should be noted that in the outer solutions, to which the solutions in this inner 
region must be matched, the term of O(e)  in the pressure (the first perturbation) does 
not have a gradient in z ,  in contrast to the velocity; it depends only upon cplz and 
is thus a function of x alone. This can be seen immediately upon consideration of the 
equation of motion in the flow direction. Evidently, this allows the formulation of 
the inner region as described above; no distinction need be made, as x+ -+ - a, 
between that part of the flow for which z > z ,  and that for which z < z,. That is, there 
need be no distinction, to first order, between the subsonic and supersonic parts of 
the flow. Therefore, although the supersonic flow upstream of the shock wave is 
dependent upon conditions downstream of it because the flow is mixed in the 
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FIGURE 4. Sketch of the flow field to  scale of inner region enclosing the shock wave (5 = O(d)) 
showing the compression wavelets that  coalesce to  form the shock wave, as in Melnik & Grossman 
(1974). 

z-direction, to O ( E )  this upstream influence is limited to a distance O ( d )  upstream of 
the shock. Thus the essential result of changes in pressure downstream of the shock 
wave will be changes in its location; by analogy with the result for flow in 
two-dimensional channels (Messiter & Adamson 1975) it is expected that variations 
in back pressure O(e2)  will cause changes in location of the shock wave O(1). Although 
the problem under consideration is only a model of the actual flow through a rotor, 
so that detailed comparisons are not valid, i t  appears that the general results found 
here should apply. 

5. Solutions for 6 % E 

As mentioned previously, when 6 $ 6 one expects small changes in the flow as i t  
passes through the constriction. Here, in a brief analysis, i t  is shown that as long as 
zoo-&b = O(l ) ,  the perturbations to the flow are indeed of higher order than in the 
S = O(e)  case. However, as the sonic surface in the incoming flow approaches the 
centreline of the channel, the possibility of choking again occurs and larger pertur- 
bations are found. I n  the following, 6 = O(&) is chosen as an example of the general 
condition 6 $ E .  

When 6 = €4, multiple half-powers of E are necessary in the expansions for the 
velocity components. Thus it is found that the correct expansions are 

u = 1 + d m  ( z  - zso) + €8 f& + E2U2 + . . . , (34a)  

v =  E 2 V 2 +  . . . )  (34b) 

w = E2W2 + . . . , ( 3 4 4  

where, following the same procedure as in the case where S = O ( s ) ,  one can show that 
the flow is irrotational to O(&) and that & = &(z). Again, from (9a), the governing 
equation for second-order terms is 

*2y + w2z = 2m(z - zoo) &xx (35) 

with boundary conditions 

212 (x, * s , z )  = Tf’ (x), 
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Division of (35) into two parts, wZz = 2m(z - zS0)  $fxs  + Go(z) and vZy = -Go(z), allows 
derivation of solutions for w2 and v2. When the boundary conditions are satisfied a 
differential equation that is easily integrated is found for $2. Finally, then, one obtains 
for U .  V .  and W .  

-+. . . ,  u = l + € : m ( z - z o o ) + E ~  f ( 4  
2ms (zoo - i b )  (37 a )  

v = -E2f'(X)y/s+. . . , (37 b )  

From (37a-c),  i t  is seen that,  as long as zoo-# = O(1), perturbations in U caused 
by the constriction are O ( d )  and that V and W are O(e2) ,  as in the case 8 = O ( E ) .  
Moreover, the solution for U is quite simple, with no limitations on the position of 
the sonic surface, which is, simply, z ,  = z O 0 - e ( y +  l)$;x + . . . . No choking occurs. 

As zoo-@ becomes small, the solution is not so simple. For example, if ( 7 ) ,  with 
T = a2, and ( 3 7 a )  are used to  calculate the Mach number M ,  it  is easily shown that 
the average value (over z )  of M -  1 is, if U = U , + C # J ~ ~ +  . . . , 

M-1 = - [ € W - z , , ) + + € ( y +  l ) $ l x + .  . . ] d z =  € ~ m ( ~ b - z o o ) + O ( E ) .  (38) : J: 
Thus, from (37a) and (38), i t  is seen that for zoo -4b = O(&) the first perturbation from 
Uo is of the same order as M -  1 ; evidently this is a distinguished limit in which 
choking can occur, and must be investigated in more detail. An interesting feature 
of this case is that  while V = O(e2), as in the previous calculations, W now is O(d) ,  
as seen from (37 c ) .  

If we now define zto and write Uo in terms of it as 

zZo = ( Z o O - ~ ) E d ,  (39a)  

uo = l+€~m(z-~Bb)-EmZo*,, (39b)  

u= U 0 + E # , , + € ~ U ~ +  . . . ,  (40a) 

V = € 2 w 2 +  . . . ,  (40b) 

w = d w ;  + €2W2 + . . . . (404 

Following the same procedures as in the previous calculat,ions, i t  is easily shown that 
the flow is irrotational to order E ,  that  there are no terms of O ( e )  in V and W, and 
that = q51(x). From (9a) and (7) ,  i t  is found that the equation for wj is 

then, the expansions for the velocity components may be written as 

2m(z-ib)#,xx = WjZ? (41) 

so that after integration and application of boundary conditions 

2 

w+ = mb2 [ - E] dlXx. 

This result agrees with that given in (37c) if the q51x shown in (37a)  is used to calculate 
q51xx. I n  order to obtain 4, for the present limit, i t  is necessary to  derive the equation 
involving w2 and w2, again from (9a)  ahd (7).  This is found to be 

(43) [ ( y +  1 ) $ 1 x - 2 m z ~ o + m 2 ( z - ~ b ) 2 ]  q51xx+2m(z-~gb)u;x +mw;-v2,-w2, = 0, 
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where i t  may be noted that since both $lxx and ug, appear, a second relation between 
them is necessary. This relation is derived by substituting (40a-c) into the vorticity 
equation (9c ) ;  one obtains (w;),, = ( u ; ) ~ ~  = 0 and ((u&- (w;),)~ = - V L $ ~ , ~ .  The first 
of these questions is satisfied by ( 4 2 ) ;  the second and third indicate that u; is 
independent of y, and indeed u; may be found by integrating the third equation, after 
substitution of ( 4 2 ) ,  to  give 

where g(x) is a function of integration. 
If, again, (43) is divided such that 

v2, = [(Y + 1 )  $1, - 2m$ol $ l X X  + go (4, 
w2z - - m2 ( z  - ib)2 $lxz + 2m ( z  -46) u;, + mw; -go (x), 

and (42) and (44) are used for wt and u; respectively in the equation for wzz, then 
solutions that satisfy the boundary conditions may be found for w2 and v2. That is, 
go(”) is found by application of the boundary conditions w2 = 0 a t  z = 0 and z = b ,  
and the governing equation for #1 is obtained when the boundary conditions 
v 2 ( x ,  +s ,  z )  = Tf ’  are applied. Thus 

defines $1 (x) in terms of the wall shape f (x). It may be noted, as a check, that  for 
m = O ( d )  so that Sm = O ( E ) ,  the result for $lx is again that given in ( 2 2 ) .  The 
appearance of $lxxx, the second derivative of the velocity perturbation, is of some 
interest because it has no counterpart in governing equations for flows in two- 
dimensional channels. 

Although an analytical solution for $1 (x) in terms o f f  (x) cannot be found, i t  
is possible to  infer some key features of the flow field from (45). For this dis- 
cussion, i t  is convenient to  let u1 = $lx, ct = 2mz,*,/(y+ l ) ,  p = m2b2/4(y+ 1 )  and 
g = 2f / s ( y+  l)+m2b4ulx,/15(y+ 1 ) .  Then (45) and its derivative may be written as 

where the prime indicates a derivative with respect to x. These equations are similar 
to those relating Mach number and area in a one-dimensional channel flow. Here, the 
equivalent area function g is formed by the function f that governs the actual area, 
and an additional function u,,, which has the same effect as f and thus may be 
interpreted as being equivalent to a change in cross-sectional flow area. Now, 
however, this function depends on the solution itself. This viewpoint is employed 
when heat addition to a nozzle flow is considered (Zierep 1975); although u,, is 
certainly not an arbitrary function as in the flow with heat addition, there are, 
nevertheless, some similarities with this problem. I n  the present problem, the 
relatively large vorticity in the incoming flow leads, through continuity, to a 
relatively large value of w ( O ( e ) ) .  This, in turn, leads through the vorticity equation 
to increased acceleration of the fluid and a rate of change of acceleration that appears 
equivalent to an area change, It may be noted that if the cross-sectional flow area 
in the stream tube formed by the sidewalls, the wall at z = 0 (or z = b ) ,  and a chosen 
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stream surface, z = z,,(x), is calculated, it is found that this area goes through an 
extremum when w; = 0 and thus from (42) when ul, = 0 rather than when f ’  = 0. 
This result lends some support to the present interpretation in that one possible cause 
for g’ = 0 is uIx = 0. 

If the indicated integration in (38) is carried out to  terms O ( E ) ,  it is easily shown 
that M -  1 -+ 0 as u1 + a. Inspection of (46b) ,  however, shows that the value of u, 
associated with g’ = 0 and with the singularity when u1 has a bifurcation (46a),  is 
u1 = a +/3. Apparently, then, for this case of large shear, the flow field does not reach 
the same conditions as a one-dimensional flow a t  a minimum area; the average Mach 
number at this point is no longer unity. 

If one imagines an incoming flow that is subsonic on the average (z& > 0, so a > 0) 
and that accelerates to  some maximum velocity, then it appears possible that as the 
maximum is approached, ulxxx < 0 and although ul:cx < 0, g > 0 such that g’ = 0 
and g > 0 a t  the maximum where ulX = 0. I n  this event, since f’ > 0, g‘ = 0 upstream 
of the point a t  which f‘ = 0 (physical minimum area). I n  order that  u1 = 0 as g 0 
upstream of the flow constriction, the minus sign is used in (46a). As the magnitude 
of the average Mach number in the incoming flow is increased, a decreases in 
magnitude. When conditions are such that as the fluid accelerates through the 
constriction, g = ( L X + / ~ ) ~  a t  the point a t  which g’ = 0, then u1 = a+P there and 
ulx =t= 0. Downstream of that point, then, either solution of (46a) is valid, depending 
upon downstream conditions. I n  fact, if one considers possible variations of ulzxx and 
ulxx throughout the flow, it appears possible that another point where g’ = 0 may 
exist downstream of the first, similar to the situation that exists in the flow with heat 
addition (Zierep 1975). I n  any event, once the flow downstream of the point a t  which 
9’ = 0 becomes supersonic, the possibility of shock waves in the supersonic part of 
the flow exists, as shown in the case 6 = E .  However, in the present case, where the 
flow is governed by an effective area change involving ulxx, rather than the 
physical-area change, questions of the stability of the flow with a shock wave would 
have to be investigated. 

Finally, the counterpart of the above example, that  where the incoming flow is 
supersonic on the average (a < O), can be analysed in the same manner by imagining 
a flow that decelerates to a minimum value of ul, with ulxxx > 0 and ulx, > 0 so that 
g > 0 as uIx = 0 is approached. In  this case, f ’  < 0 if g’ = 0 is to occur, so the 
extremum in g occurs downstream of the point f ’  = 0. The condition a < 0 such that 
a+p < 0 is considered because if a < 0 such that a+/? > 0, then from (46b) 
u1 > a+/3 if ui is to be negative (decelerating flow), and the positive sign must be 
used in (46a)  ; then, however, the condition that u1 + 0 upstream of the constriction 
where g + 0 cannot be met. For a+p < 0, the positive sign is used, and, as in the 
previous example, a singularity occurs if u1 = a+/3 at, the point where g’ = 0; two 
possible solutions exist downstream of the flow constriction. Again, shock waves in 
the supersonic part of the flow may be possible, but questions of shock-wave stability 
must be answered before this can be considered to be a certainty. 

6. Discussion 
A general conclusion drawn from this study and which may be applied to  the flow 

through a three-dimensional compressor cascade is that, to lowest order the flow may 
be interpreted the same way as a one-dimensional flow so long as the average Mach 
number is considered. This even applies to the effect of variations in the pressure 
downstream of a shock wave on its location, even though the shock wave may not 
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extend completely across the channel. The complete analogy breaks down when flows 
with large shear are considered in that the Mach number a t  which bifurcation in 
solutions is found is not unity, although it is for the case S = O ( e ) .  

The authors are indebted to Professor A. F. Messiter for many suggestions and 
discussions during the course of this study. This work was supported, in part, by the 
Office of Naval Research ; this support is gratefully acknowledged. 
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